原创 | 文 BFT机器人
生成式AI竞争激烈,“技术寡头”引人忧
横空出世的ChatGPT无疑是目前科技界最耀眼的“紫微星”。
Chat GPT一经推出,便凭借其秒杀过往聊天机器人的“超级大脑”轰轰烈烈地占据了舆论场,在博得众多人工智能巨头的青睐,成为AI投资新风口的同时;ChatGPT在自然语言处理任务上表现出的强大性能,展现了大语言模型的强大潜力,并引发诸如元学习、模型可解释性等研究方向,对人工智能研究范式产生了革命性影响。
如今,各大科技巨头正针对大语言模型展开空前竞争,抢滩生成式AI应用开发,更大的数据集、更强大的算力、更广阔的市场、更雄厚的资金已成为这个“卷生卷死”赛道的入场券。
但与此同时,大语言模型的核心技术被龙头企业牢牢掌握,没有一定的技术沉淀,普通企业、研究机构与普通人根本吃不下“ChatGPT”这块大蛋糕。对于产业而言,技术的开发与共享就是“润滑剂”,如果核心技术被少数人垄断,不仅会产生“闭门造车”的困境,技术开发的准入门槛和研发成本大大提高,也会导致创业空间缩小,对产业生态活力产生不良影响。
在此前提下,Hugging Face奉行的开源精神就格外引人侧目。Hugging Face提供了大量高质量的开源模型与工具,将研发成果最大程度地惠及全社区,极大地降低了人工智能的技术门槛,让AI更加平民化,能够惠及更多普通大众。这对激发人工智能创新活力,促使更多样化、个性化的应用涌现有重要意义。
Hugging Face的前世今生
2016年,一家命名为Hugging Face的公司成立了。
16年创办初期,它与许多类似创业公司一样奔跑在聊天机器人赛道上,Hugging Face还知识一个基于LSTM的聊天机器人应用程序,主要服务于青少年的情感于娱乐。但由于技术的不成熟和难以变现的商业模式,Hugging Face虽然拥有了一部分核心用户,但从企业的发展来看,其的发展速度是滞缓的。
2018年开始,苦于破局之策的创始人干脆开放聊天机器人AI模型,让用户自行开发服务,初衷是从用户共创中为开发提供灵感。这一“无心插柳”的举动,却成为了Hugging Face踏进高速发展快车道,收获“绿柳成荫”的开始。
由于开源的AI模型寥寥可数,Hugging Face很快成为人工智能开发者的聚集地,创始团队见此也顺势跟进用户需求,将本身聊天平台转化为开发者社区,慢慢形成了全网最大的自然语言处理开源模型数据库。
同年,Hugging Face发布Transformers框架,该框架基于注意力机制,广泛应用于机器翻译、语音识别、文本生成等自然语言处理任务。Transformers高性能与开源属性,一举成为机器学习工具库中最重要的资源之一,Hugging Face的知名度与影响力迅速提高。
今天的Hugging Face已俨然是机器学习模型研究的中心,成为GitHub史上增长最快的AI项目。
打造机器学习领域的“GitHub”
Hugging Face专注NLP技术,致力于让人工智能更加友好开放,通过技术创新不断丰富产品与服务,构建机器学习领域的GitHub,成为广大研究人员和技术开发者的合作伙伴。
技术DNA:Transformers
2018年开源的面向自然语言处理的预训练语言模型——Transformers,是Hugging Face最核心的项目。Transformers基于注意力机制,被广泛应用于翻译、语音识别、图像分类、文本生成等自然语言处理任务。Hugging Face开发的模型与数据集,可以直接使用进行推理、迁移学习,使Transformers框架在性能与易用性上达到业界领先水平。
BERT模型通过两个Transformers网络进行预训练,让模型能够同时学习当前与历史位置的信息;GPT-3模型也利用Transformers进行训练,并在语言生成上展现出了大语言模型的巨大潜力。
Transformers彻底改变了深度学习在NLP领域的发展范式,降低了相关研究与应用的门槛,让Hugging Face一跃成为行业翘楚,成为人工智能社区最具影响力的技术供应商。
丰富产品,矩阵服务
在Transformers框架基础上,Hugging Face提供了丰富的产品与服务。例如用于生成与分析文本的AI知识库 Anthropic;用于处理与分析图像的Computer Vision;用于迁移学习的Model Hub等。这些产品与服务广泛应用于内容审核、网络安全等场景,覆盖各个行业的需求。
此外,截至2023年4月,Hugging Face还提交共享了166894个训练模型,26900个数据集,涵盖NLP、语音、生物学、时间序列、计算机视觉、强化学习等领域,弥补了科学与生产之间的鸿沟。
在数十万的模型中,有一半是公开的,任何人均可使用,这些模型已服务数万家企业进行资源开发应用,帮助科研人员和相关从业人员更好地构建模型、更好地参与到产品和工作流程中,其中不乏Meta、亚马逊、微软、谷歌等知名AI团队。
网址:https://huggingface.co/
AI界“笑脸顶流”的商业化之路
2021年才初步探索商业化的Hugging Face,2022年5月就完成了由Lux Capital领投、红杉资本参投的1亿美元C轮融资,估值狂飙到20亿美元,成为名副其实的AI领域的“笑脸顶流”。
Hugging是如何一炮而红,实现商业化的呢?简单来说,就是走对了路,又把路走对了。
Hugging Face选择了正确的发展方向——开源。凭借开源项目Transformers,Hugging Face积累了巨大的影响力,聚集了广大开发者构建了庞大的社区,也赢得了客户与投资者的信任。开源让Hugging Face拥有了足够强大的技术实力和市场资源,为其商业化转型奠定了重要基础。
其次,Hugging Face制定了合理的商业化发展路径。凭借开源社区积累影响力,而后逐步向SaaS产品和企业服务拓展。这种渐进式的转型,让Hugging Face在开源和商业件取得了良好的平衡,也是其能取得成功的重要原因。
Hugging Face的主要盈利业务主要有三类,一是付费制会员;二是数据托管;三是定制化解决方案。Hugging Face围绕NLP、Vision等方向为企业客户提供个性化功能应用,以获得技术服务费用;企业级SaaS产品可帮助企业集中管理多个模型、数据集和实验,实现标准化作业和协作;此外,Hugging Face构建了广大开发者社区,在线课程和社区受到众多开源工具和框架开发者的喜爱,并通过会员订阅的方式获得收益。
Hugging Face之所以能成功实现商业化,与其开源积累的强大影响力分不开关系。开源让Hugging Face聚集广大技术开发人才产生协同,技术让Hugging Face领先同行,影响力让Hugging Face赢得信任与支持
2021年的Hingging Face就已服务千家客户,并获得了英特尔、高通等知名企业的青睐,实现1000万美元的营收。从数据来看,Hugging Face这套的“开源带动商业”的策略是非常成功的,并让Hugging Face不断扩张版图,成为AI界独树一帜的存在,也为其他AI初创公示提供借鉴范式。
结语
“无论是谷歌、亚马逊还是Facebook,你一开始会认为是竞争对手的公司,现在几乎都成了支持者,就像生态系统中的一块不动产。”
“秉持做好机器学习和实现机器学习“平民化”的信念,采取一种非常开放的协作方式,让任何人都可以一起做出贡献“
Hugging Face转型成功或许是一场偶然,但后来的持续发展与团队的正确维护和研发活力脱不开干系,Hugging Face从未放弃科研领域的深挖,就像把模型开源的初衷,是为了集思广益提升技术做出更好的产品一样。
Hugging Face选择了开源,又把开源做成功了;选择了商业化,又在技术与商业之间找到了平衡。通过开源与商业双轮驱动的“独门武功”,Hugging Face在影响力和盈利上实现双丰收,既能引领技术潮流,又能获得资本青睐。
如今的Hugging Face已成功跻身人工智能领域的佼佼者,它站在技术与产业发展的前沿,相信在未来,Hugging Face也将持续书写人工智能产业发展的重要篇章。
更多精彩内容请关注公众号:BFT机器人本文为原创文章,版权归BFT机器人所有,如需转载请与我们联系。若您对该文章内容有任何疑问,请与我们联系,将及时回应。