• [1]^Bengio, Y.; Courville, A.; Vincent, P. (2013). "Representation Learning: A Review and New Perspectives". IEEE Transactions on Pattern Analysis and Machine Intelligence. 35 (8): 1798–1828. arXiv:1206.5538. doi:10.1109/tpami.2013.50. PMID 23787338..
  • [2]^Schmidhuber, J. (2015). "Deep Learning in Neural Networks: An Overview". Neural Networks. 61: 85–117. arXiv:1404.7828. doi:10.1016/j.neunet.2014.09.003. PMID 25462637..
  • [3]^Bengio, Yoshua; LeCun, Yann; Hinton, Geoffrey (2015). "Deep Learning". Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442..
  • [4]^Ciresan, Dan; Meier, U.; Schmidhuber, J. (June 2012). "Multi-column deep neural networks for image classification". 2012 IEEE Conference on Computer Vision and Pattern Recognition: 3642–3649. arXiv:1202.2745. doi:10.1109/cvpr.2012.6248110. ISBN 978-1-4673-1228-8..
  • [5]^Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffry (2012). "ImageNet Classification with Deep Convolutional Neural Networks" (PDF). NIPS 2012: Neural Information Processing Systems, Lake Tahoe, Nevada..
  • [6]^"Google's AlphaGo AI wins three-match series against the world's best Go player". TechCrunch. 25 May 2017..
  • [7]^Marblestone, Adam H.; Wayne, Greg; Kording, Konrad P. (2016). "Toward an Integration of Deep Learning and Neuroscience". Frontiers in Computational Neuroscience. 10: 94. doi:10.3389/fncom.2016.00094. PMC 5021692. PMID 27683554..
  • [8]^Olshausen, B. A. (1996). "Emergence of simple-cell receptive field properties by learning a sparse code for natural images". Nature. 381 (6583): 607–609. Bibcode:1996Natur.381..607O. doi:10.1038/381607a0. PMID 8637596..
  • [9]^Bengio, Yoshua; Lee, Dong-Hyun; Bornschein, Jorg; Mesnard, Thomas; Lin, Zhouhan (2015-02-13). "Towards Biologically Plausible Deep Learning". arXiv:1502.04156 [cs.LG]..
  • [10]^Deng, L.; Yu, D. (2014). "Deep Learning: Methods and Applications" (PDF). Foundations and Trends in Signal Processing. 7 (3–4): 1–199. doi:10.1561/2000000039..
  • [11]^Bengio, Yoshua (2009). "Learning Deep Architectures for AI" (PDF). Foundations and Trends in Machine Learning. 2 (1): 1–127. CiteSeerX 10.1.1.701.9550. doi:10.1561/2200000006..
  • [12]^LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey (28 May 2015). "Deep learning". Nature. 521 (7553): 436–444. Bibcode:2015Natur.521..436L. doi:10.1038/nature14539. PMID 26017442..
  • [13]^Jürgen Schmidhuber (2015). Deep Learning. Scholarpedia, 10(11):32832. Online.
  • [14]^Hinton, G.E. (2009). "Deep belief networks". Scholarpedia. 4 (5): 5947. Bibcode:2009SchpJ...4.5947H. doi:10.4249/scholarpedia.5947..
  • [15]^Murphy, Kevin P. (24 August 2012). Machine Learning: A Probabilistic Perspective. MIT Press. ISBN 978-0-262-01802-9..
  • [16]^Patel, Ankit; Nguyen, Tan; Baraniuk, Richard (2016). "A Probabilistic Framework for Deep Learning" (PDF). Advances in Neural Information Processing Systems..
  • [17]^Balázs Csanád Csáji (2001). Approximation with Artificial Neural Networks; Faculty of Sciences; Eötvös Loránd University, Hungary.
  • [18]^Cybenko (1989). "Approximations by superpositions of sigmoidal functions" (PDF). Mathematics of Control, Signals, and Systems. 2 (4): 303–314. doi:10.1007/bf02551274. Archived from the original (PDF) on 2015-10-10..
  • [19]^Hornik, Kurt (1991). "Approximation Capabilities of Multilayer Feedforward Networks". Neural Networks. 4 (2): 251–257. doi:10.1016/0893-6080(91)90009-t..
  • [20]^Haykin, Simon S. (1999). Neural Networks: A Comprehensive Foundation. Prentice Hall. ISBN 978-0-13-273350-2..
  • [21]^Hassoun, Mohamad H. (1995). Fundamentals of Artificial Neural Networks. MIT Press. p. 48. ISBN 978-0-262-08239-6..
  • [22]^Lu, Z., Pu, H., Wang, F., Hu, Z., & Wang, L. (2017). The Expressive Power of Neural Networks: A View from the Width. Neural Information Processing Systems, 6231-6239..
  • [23]^Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. (2012). "Improving neural networks by preventing co-adaptation of feature detectors". arXiv:1207.0580 [math.LG]..
  • [24]^Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning (PDF). Springer. ISBN 978-0-387-31073-2..
  • [25]^Rina Dechter (1986). Learning while searching in constraint-satisfaction problems. University of California, Computer Science Department, Cognitive Systems Laboratory.Online.
  • [26]^Igor Aizenberg, Naum N. Aizenberg, Joos P.L. Vandewalle (2000). Multi-Valued and Universal Binary Neurons: Theory, Learning and Applications. Springer Science & Business Media..
  • [27]^Co-evolving recurrent neurons learn deep memory POMDPs. Proc. GECCO, Washington, D. C., pp. 1795-1802, ACM Press, New York, NY, USA, 2005..
  • [28]^Ivakhnenko, A. G. (1973). Cybernetic Predicting Devices. CCM Information Corporation..
  • [29]^Ivakhnenko, Alexey (1971). "Polynomial theory of complex systems". IEEE Transactions on Systems, Man and Cybernetics. 1 (4): 364–378. doi:10.1109/TSMC.1971.4308320..
  • [30]^Fukushima, K. (1980). "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biol. Cybern. 36 (4): 193–202. doi:10.1007/bf00344251. PMID 7370364..
  • [31]^Seppo Linnainmaa (1970). The representation of the cumulative rounding error of an algorithm as a Taylor expansion of the local rounding errors. Master's Thesis (in Finnish), Univ. Helsinki, 6-7..
  • [32]^Griewank, Andreas (2012). "Who Invented the Reverse Mode of Differentiation?" (PDF). Documenta Matematica (Extra Volume ISMP): 389–400..
  • [33]^Werbos, P. (1974). "Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences". Harvard University. Retrieved 12 June 2017..
  • [34]^Werbos, Paul (1982). "Applications of advances in nonlinear sensitivity analysis" (PDF). System modeling and optimization. Springer. pp. 762–770..
  • [35]^LeCun et al., "Backpropagation Applied to Handwritten Zip Code Recognition," Neural Computation, 1, pp. 541–551, 1989..
  • [36]^J. Weng, N. Ahuja and T. S. Huang, "Cresceptron: a self-organizing neural network which grows adaptively," Proc. International Joint Conference on Neural Networks, Baltimore, Maryland, vol I, pp. 576-581, June, 1992..
  • [37]^J. Weng, N. Ahuja and T. S. Huang, "Learning recognition and segmentation of 3-D objects from 2-D images," Proc. 4th International Conf. Computer Vision, Berlin, Germany, pp. 121-128, May, 1993..
  • [38]^J. Weng, N. Ahuja and T. S. Huang, "Learning recognition and segmentation using the Cresceptron," International Journal of Computer Vision, vol. 25, no. 2, pp. 105-139, Nov. 1997..
  • [39]^de Carvalho, Andre C. L. F.; Fairhurst, Mike C.; Bisset, David (1994-08-08). "An integrated Boolean neural network for pattern classification". Pattern Recognition Letters. 15 (8): 807–813. doi:10.1016/0167-8655(94)90009-4..
  • [40]^Hinton, Geoffrey E.; Dayan, Peter; Frey, Brendan J.; Neal, Radford (1995-05-26). "The wake-sleep algorithm for unsupervised neural networks". Science. 268 (5214): 1158–1161. Bibcode:1995Sci...268.1158H. doi:10.1126/science.7761831..
  • [41]^S. Hochreiter., "Untersuchungen zu dynamischen neuronalen Netzen," Diploma thesis. Institut f. Informatik, Technische Univ. Munich. Advisor: J. Schmidhuber, 1991..
  • [42]^Hochreiter, S.; et al. (15 January 2001). "Gradient flow in recurrent nets: the difficulty of learning long-term dependencies". In Kolen, John F.; Kremer, Stefan C. A Field Guide to Dynamical Recurrent Networks. John Wiley & Sons. ISBN 978-0-7803-5369-5..
  • [43]^Morgan, Nelson; Bourlard, Hervé; Renals, Steve; Cohen, Michael; Franco, Horacio (1993-08-01). "Hybrid neural network/hidden markov model systems for continuous speech recognition". International Journal of Pattern Recognition and Artificial Intelligence. 07 (4): 899–916. doi:10.1142/s0218001493000455. ISSN 0218-0014..
  • [44]^Robinson, T. (1992). "A real-time recurrent error propagation network word recognition system". ICASSP: 617–620..
  • [45]^Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K. J. (March 1989). "Phoneme recognition using time-delay neural networks". IEEE Transactions on Acoustics, Speech, and Signal Processing. 37 (3): 328–339. doi:10.1109/29.21701. ISSN 0096-3518..
  • [46]^Baker, J.; Deng, Li; Glass, Jim; Khudanpur, S.; Lee, C.-H.; Morgan, N.; O'Shaughnessy, D. (2009). "Research Developments and Directions in Speech Recognition and Understanding, Part 1". IEEE Signal Processing Magazine. 26 (3): 75–80. Bibcode:2009ISPM...26...75B. doi:10.1109/msp.2009.932166..
  • [47]^Bengio, Y. (1991). "Artificial Neural Networks and their Application to Speech/Sequence Recognition". McGill University Ph.D. thesis..
  • [48]^Deng, L.; Hassanein, K.; Elmasry, M. (1994). "Analysis of correlation structure for a neural predictive model with applications to speech recognition". Neural Networks. 7 (2): 331–339. doi:10.1016/0893-6080(94)90027-2..
  • [49]^Heck, L.; Konig, Y.; Sonmez, M.; Weintraub, M. (2000). "Robustness to Telephone Handset Distortion in Speaker Recognition by Discriminative Feature Design". Speech Communication. 31 (2): 181–192. doi:10.1016/s0167-6393(99)00077-1..
  • [50]^"Acoustic Modeling with Deep Neural Networks Using Raw Time Signal for LVCSR (PDF Download Available)". ResearchGate. Retrieved 2017-06-14..
  • [51]^Hochreiter, Sepp; Schmidhuber, Jürgen (1997-11-01). "Long Short-Term Memory". Neural Computation. 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735. ISSN 0899-7667. PMID 9377276..
  • [52]^Graves, Alex; Eck, Douglas; Beringer, Nicole; Schmidhuber, Jürgen (2003). "Biologically Plausible Speech Recognition with LSTM Neural Nets" (PDF). 1st Intl. Workshop on Biologically Inspired Approaches to Advanced Information Technology, Bio-ADIT 2004, Lausanne, Switzerland. pp. 175–184..
  • [53]^Graves, Alex; Fernández, Santiago; Gomez, Faustino (2006). "Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks". Proceedings of the International Conference on Machine Learning, ICML 2006: 369–376. CiteSeerX 10.1.1.75.6306..
  • [54]^Santiago Fernandez, Alex Graves, and Jürgen Schmidhuber (2007). An application of recurrent neural networks to discriminative keyword spotting. Proceedings of ICANN (2), pp. 220–229..
  • [55]^Sak, Haşim; Senior, Andrew; Rao, Kanishka; Beaufays, Françoise; Schalkwyk, Johan (September 2015). "Google voice search: faster and more accurate"..
  • [56]^Hinton, Geoffrey E. (2007-10-01). "Learning multiple layers of representation". Trends in Cognitive Sciences. 11 (10): 428–434. doi:10.1016/j.tics.2007.09.004. ISSN 1364-6613. PMID 17921042..
  • [57]^Hinton, G. E.; Osindero, S.; Teh, Y. W. (2006). "A Fast Learning Algorithm for Deep Belief Nets" (PDF). Neural Computation. 18 (7): 1527–1554. doi:10.1162/neco.2006.18.7.1527. PMID 16764513..
  • [58]^Bengio, Yoshua (2012). "Practical recommendations for gradient-based training of deep architectures". arXiv:1206.5533 [cs.LG]..
  • [59]^G. E. Hinton., "Learning multiple layers of representation," Trends in Cognitive Sciences, 11, pp. 428–434, 2007..
  • [60]^Hinton, G.; Deng, L.; Yu, D.; Dahl, G.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.; Kingsbury, B. (2012). "Deep Neural Networks for Acoustic Modeling in Speech Recognition --- The shared views of four research groups". IEEE Signal Processing Magazine. 29 (6): 82–97. doi:10.1109/msp.2012.2205597..
  • [61]^Deng, Li; Hinton, Geoffrey; Kingsbury, Brian (1 May 2013). "New types of deep neural network learning for speech recognition and related applications: An overview" – via research.microsoft.com..
  • [62]^Deng, L.; Li, J.; Huang, J. T.; Yao, K.; Yu, D.; Seide, F.; Seltzer, M.; Zweig, G.; He, X. (May 2013). "Recent advances in deep learning for speech research at Microsoft". 2013 IEEE International Conference on Acoustics, Speech and Signal Processing: 8604–8608. doi:10.1109/icassp.2013.6639345. ISBN 978-1-4799-0356-6..
  • [63]^Sak, Hasim; Senior, Andrew; Beaufays, Francoise (2014). "Long Short-Term Memory recurrent neural network architectures for large scale acoustic modeling" (PDF)..
  • [64]^Li, Xiangang; Wu, Xihong (2014). "Constructing Long Short-Term Memory based Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition". arXiv:1410.4281 [cs.CL]..
  • [65]^Zen, Heiga; Sak, Hasim (2015). "Unidirectional Long Short-Term Memory Recurrent Neural Network with Recurrent Output Layer for Low-Latency Speech Synthesis" (PDF). Google.com. ICASSP. pp. 4470–4474..
  • [66]^Deng, L.; Abdel-Hamid, O.; Yu, D. (2013). "A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion" (PDF). Google.com. ICASSP..
  • [67]^Sainath, T. N.; Mohamed, A. r; Kingsbury, B.; Ramabhadran, B. (May 2013). "Deep convolutional neural networks for LVCSR". 2013 IEEE International Conference on Acoustics, Speech and Signal Processing: 8614–8618. doi:10.1109/icassp.2013.6639347. ISBN 978-1-4799-0356-6..
  • [68]^Yann LeCun (2016). Slides on Deep Learning Online.
  • [69]^NIPS Workshop: Deep Learning for Speech Recognition and Related Applications, Whistler, BC, Canada, Dec. 2009 (Organizers: Li Deng, Geoff Hinton, D. Yu)..
  • [70]^Keynote talk: Recent Developments in Deep Neural Networks. ICASSP, 2013 (by Geoff Hinton)..
  • [71]^D. Yu, L. Deng, G. Li, and F. Seide (2011). "Discriminative pretraining of deep neural networks," U.S. Patent Filing..
  • [72]^Deng, L.; Hinton, G.; Kingsbury, B. (2013). "New types of deep neural network learning for speech recognition and related applications: An overview (ICASSP)" (PDF)..
  • [73]^Yu, D.; Deng, L. (2014). Automatic Speech Recognition: A Deep Learning Approach (Publisher: Springer). ISBN 978-1-4471-5779-3..
  • [74]^"Deng receives prestigious IEEE Technical Achievement Award - Microsoft Research". Microsoft Research. 3 December 2015..
  • [75]^Li, Deng (September 2014). "Keynote talk: 'Achievements and Challenges of Deep Learning - From Speech Analysis and Recognition To Language and Multimodal Processing'". Interspeech..
  • [76]^Yu, D.; Deng, L. (2010). "Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition". NIPS Workshop on Deep Learning and Unsupervised Feature Learning..
  • [77]^Seide, F.; Li, G.; Yu, D. (2011). "Conversational speech transcription using context-dependent deep neural networks". Interspeech..
  • [78]^Deng, Li; Li, Jinyu; Huang, Jui-Ting; Yao, Kaisheng; Yu, Dong; Seide, Frank; Seltzer, Mike; Zweig, Geoff; He, Xiaodong (2013-05-01). "Recent Advances in Deep Learning for Speech Research at Microsoft". Microsoft Research..
  • [79]^"Nvidia CEO bets big on deep learning and VR". Venture Beat. April 5, 2016..
  • [80]^"From not working to neural networking". The Economist..
  • [81]^Oh, K.-S.; Jung, K. (2004). "GPU implementation of neural networks". Pattern Recognition. 37 (6): 1311–1314. doi:10.1016/j.patcog.2004.01.013..
  • [82]^Chellapilla, K., Puri, S., and Simard, P. (2006). High performance convolutional neural networks for document processing. International Workshop on Frontiers in Handwriting Recognition..
  • [83]^Cireşan, Dan Claudiu; Meier, Ueli; Gambardella, Luca Maria; Schmidhuber, Jürgen (2010-09-21). "Deep, Big, Simple Neural Nets for Handwritten Digit Recognition". Neural Computation. 22 (12): 3207–3220. arXiv:1003.0358. doi:10.1162/neco_a_00052. ISSN 0899-7667. PMID 20858131..
  • [84]^Raina, Rajat; Madhavan, Anand; Ng, Andrew Y. (2009). "Large-scale Deep Unsupervised Learning Using Graphics Processors". Proceedings of the 26th Annual International Conference on Machine Learning. ICML '09. New York, NY, USA: ACM: 873–880. CiteSeerX 10.1.1.154.372. doi:10.1145/1553374.1553486. ISBN 9781605585161..
  • [85]^Sze, Vivienne; Chen, Yu-Hsin; Yang, Tien-Ju; Emer, Joel (2017). "Efficient Processing of Deep Neural Networks: A Tutorial and Survey". arXiv:1703.09039 [cs.CV]..
  • [86]^"Announcement of the winners of the Merck Molecular Activity Challenge"..
  • [87]^"Multi-task Neural Networks for QSAR Predictions | Data Science Association". www.datascienceassn.org. Retrieved 2017-06-14..
  • [88]^"Toxicology in the 21st century Data Challenge".
  • [89]^"NCATS Announces Tox21 Data Challenge Winners"..
  • [90]^"Archived copy". Archived from the original on 2015-02-28. Retrieved 2015-03-05.CS1 maint: Archived copy as title (link).
  • [91]^Ciresan, D. C.; Meier, U.; Masci, J.; Gambardella, L. M.; Schmidhuber, J. (2011). "Flexible, High Performance Convolutional Neural Networks for Image Classification" (PDF). International Joint Conference on Artificial Intelligence. doi:10.5591/978-1-57735-516-8/ijcai11-210..
  • [92]^Ciresan, Dan; Giusti, Alessandro; Gambardella, Luca M.; Schmidhuber, Juergen (2012). Pereira, F.; Burges, C. J. C.; Bottou, L.; Weinberger, K. Q., eds. Advances in Neural Information Processing Systems 25 (PDF). Curran Associates, Inc. pp. 2843–2851..
  • [93]^Ciresan, D.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. (2013). "Mitosis Detection in Breast Cancer Histology Images using Deep Neural Networks". Proceedings MICCAI. Lecture Notes in Computer Science. 7908: 411–418. doi:10.1007/978-3-642-40763-5_51. ISBN 978-3-642-38708-1..
  • [94]^"The Wolfram Language Image Identification Project". www.imageidentify.com. Retrieved 2017-03-22..
  • [95]^Vinyals, Oriol; Toshev, Alexander; Bengio, Samy; Erhan, Dumitru (2014). "Show and Tell: A Neural Image Caption Generator". arXiv:1411.4555 [cs.CV]...
  • [96]^Fang, Hao; Gupta, Saurabh; Iandola, Forrest; Srivastava, Rupesh; Deng, Li; Dollár, Piotr; Gao, Jianfeng; He, Xiaodong; Mitchell, Margaret; Platt, John C; Lawrence Zitnick, C; Zweig, Geoffrey (2014). "From Captions to Visual Concepts and Back". arXiv:1411.4952 [cs.CV]...
  • [97]^Kiros, Ryan; Salakhutdinov, Ruslan; Zemel, Richard S (2014). "Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models". arXiv:1411.2539 [cs.LG]...
  • [98]^Zhong, Sheng-hua; Liu, Yan; Liu, Yang (2011). "Bilinear Deep Learning for Image Classification". Proceedings of the 19th ACM International Conference on Multimedia. MM '11. New York, NY, USA: ACM: 343–352. doi:10.1145/2072298.2072344. ISBN 9781450306164..
  • [99]^"Why Deep Learning Is Suddenly Changing Your Life". Fortune. 2016. Retrieved 13 April 2018..
  • [100]^Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; Driessche, George van den; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda (January 2016). "Mastering the game of Go with deep neural networks and tree search". Nature. 529 (7587): 484–489. Bibcode:2016Natur.529..484S. doi:10.1038/nature16961. ISSN 1476-4687. PMID 26819042..
  • [101]^Szegedy, Christian; Toshev, Alexander; Erhan, Dumitru (2013). "Deep neural networks for object detection". Advances in Neural Information Processing Systems..
  • [102]^Hof, Robert D. "Is Artificial Intelligence Finally Coming into Its Own?". MIT Technology Review. Retrieved 2018-07-10..
  • [103]^Gers, Felix A.; Schmidhuber, Jürgen (2001). "LSTM Recurrent Networks Learn Simple Context Free and Context Sensitive Languages". IEEE Trans. Neural Netw. 12 (6): 1333–1340. doi:10.1109/72.963769. PMID 18249962..
  • [104]^Sutskever, L.; Vinyals, O.; Le, Q. (2014). "Sequence to Sequence Learning with Neural Networks" (PDF). Proc. NIPS..
  • [105]^Jozefowicz, Rafal; Vinyals, Oriol; Schuster, Mike; Shazeer, Noam; Wu, Yonghui (2016). "Exploring the Limits of Language Modeling". arXiv:1602.02410 [cs.CL]..
  • [106]^Gillick, Dan; Brunk, Cliff; Vinyals, Oriol; Subramanya, Amarnag (2015). "Multilingual Language Processing from Bytes". arXiv:1512.00103 [cs.CL]..
  • [107]^Mikolov, T.; et al. (2010). "Recurrent neural network based language model" (PDF). Interspeech..
  • [108]^"Learning Precise Timing with LSTM Recurrent Networks (PDF Download Available)". ResearchGate. Retrieved 2017-06-13..
  • [109]^LeCun, Y.; et al. (1998). "Gradient-based learning applied to document recognition". Proceedings of the IEEE. 86 (11): 2278–2324. doi:10.1109/5.726791..
  • [110]^Bengio, Y.; Boulanger-Lewandowski, N.; Pascanu, R. (May 2013). "Advances in optimizing recurrent networks". 2013 IEEE International Conference on Acoustics, Speech and Signal Processing: 8624–8628. arXiv:1212.0901. CiteSeerX 10.1.1.752.9151. doi:10.1109/icassp.2013.6639349. ISBN 978-1-4799-0356-6..
  • [111]^Dahl, G.; et al. (2013). "Improving DNNs for LVCSR using rectified linear units and dropout" (PDF). ICASSP..
  • [112]^"Data Augmentation - deeplearning.ai | Coursera". Coursera. Retrieved 2017-11-30..
  • [113]^Hinton, G. E. (2010). "A Practical Guide to Training Restricted Boltzmann Machines". Tech. Rep. UTML TR 2010-003..
  • [114]^You, Yang; Buluç, Aydın; Demmel, James (November 2017). "Scaling deep learning on GPU and knights landing clusters". SC '17, ACM. Retrieved 5 March 2018..
  • [115]^Viebke, André; Memeti, Suejb; Pllana, Sabri; Abraham, Ajith (March 2017). "CHAOS: a parallelization scheme for training convolutional neural networks on Intel Xeon Phi". The Journal of Supercomputing. 75: 197–227. doi:10.1007/s11227-017-1994-x..
  • [116]^Ting Qin, et al. "A learning algorithm of CMAC based on RLS." Neural Processing Letters 19.1 (2004): 49-61..
  • [117]^Ting Qin, et al. "Continuous CMAC-QRLS and its systolic array." Neural Processing Letters 22.1 (2005): 1-16..
  • [118]^TIMIT Acoustic-Phonetic Continuous Speech Corpus Linguistic Data Consortium, Philadelphia..
  • [119]^Robinson, Tony (30 September 1991). "Several Improvements to a Recurrent Error Propagation Network Phone Recognition System". Cambridge University Engineering Department Technical Report. CUED/F-INFENG/TR82. doi:10.13140/RG.2.2.15418.90567..
  • [120]^Abdel-Hamid, O.; et al. (2014). "Convolutional Neural Networks for Speech Recognition". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (10): 1533–1545. doi:10.1109/taslp.2014.2339736..
  • [121]^Deng, L.; Platt, J. (2014). "Ensemble Deep Learning for Speech Recognition" (PDF). Proc. Interspeech..
  • [122]^Tóth, Laszló (2015). "Phone Recognition with Hierarchical Convolutional Deep Maxout Networks" (PDF). EURASIP Journal on Audio, Speech, and Music Processing. 2015. doi:10.1186/s13636-015-0068-3..
  • [123]^"How Skype Used AI to Build Its Amazing New Language Translator | WIRED". www.wired.com. Retrieved 2017-06-14..
  • [124]^Hannun, Awni; Case, Carl; Casper, Jared; Catanzaro, Bryan; Diamos, Greg; Elsen, Erich; Prenger, Ryan; Satheesh, Sanjeev; Sengupta, Shubho; Coates, Adam; Ng, Andrew Y (2014). "Deep Speech: Scaling up end-to-end speech recognition". arXiv:1412.5567 [cs.CL]..
  • [125]^"Plenary presentation at ICASSP-2016" (PDF)..
  • [126]^"MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris Burges". yann.lecun.com..
  • [127]^Cireşan, Dan; Meier, Ueli; Masci, Jonathan; Schmidhuber, Jürgen (August 2012). "Multi-column deep neural network for traffic sign classification". Neural Networks. Selected Papers from IJCNN 2011. 32: 333–338. CiteSeerX 10.1.1.226.8219. doi:10.1016/j.neunet.2012.02.023. PMID 22386783..
  • [128]^Nvidia Demos a Car Computer Trained with "Deep Learning" (2015-01-06), David Talbot, MIT Technology Review.
  • [129]^G. W. Smith; Frederic Fol Leymarie (10 April 2017). "The Machine as Artist: An Introduction". Arts. Retrieved 4 October 2017..
  • [130]^Blaise Agüera y Arcas (29 September 2017). "Art in the Age of Machine Intelligence". Arts. Retrieved 4 October 2017..
  • [131]^Bengio, Yoshua; Ducharme, Réjean; Vincent, Pascal; Janvin, Christian (March 2003). "A Neural Probabilistic Language Model". J. Mach. Learn. Res. 3: 1137–1155. ISSN 1532-4435..
  • [132]^Goldberg, Yoav; Levy, Omar (2014). "word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method". arXiv:1402.3722 [cs.CL]..
  • [133]^Socher, Richard; Manning, Christopher. "Deep Learning for NLP" (PDF). Retrieved 26 October 2014..
  • [134]^Socher, Richard; Bauer, John; Manning, Christopher; Ng, Andrew (2013). "Parsing With Compositional Vector Grammars" (PDF). Proceedings of the ACL 2013 Conference..
  • [135]^Socher, Richard (2013). "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank" (PDF)..
  • [136]^Shen, Yelong; He, Xiaodong; Gao, Jianfeng; Deng, Li; Mesnil, Gregoire (2014-11-01). "A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval". Microsoft Research..
  • [137]^Huang, Po-Sen; He, Xiaodong; Gao, Jianfeng; Deng, Li; Acero, Alex; Heck, Larry (2013-10-01). "Learning Deep Structured Semantic Models for Web Search using Clickthrough Data". Microsoft Research..
  • [138]^Mesnil, G.; Dauphin, Y.; Yao, K.; Bengio, Y.; Deng, L.; Hakkani-Tur, D.; He, X.; Heck, L.; Tur, G.; Yu, D.; Zweig, G. (2015). "Using recurrent neural networks for slot filling in spoken language understanding". IEEE Transactions on Audio, Speech, and Language Processing. 23 (3): 530–539. doi:10.1109/taslp.2014.2383614..
  • [139]^Gao, Jianfeng; He, Xiaodong; Yih, Scott Wen-tau; Deng, Li (2014-06-01). "Learning Continuous Phrase Representations for Translation Modeling". Microsoft Research..
  • [140]^Brocardo, Marcelo Luiz; Traore, Issa; Woungang, Isaac; Obaidat, Mohammad S. (2017). "Authorship verification using deep belief network systems". International Journal of Communication Systems. 30 (12): e3259. doi:10.1002/dac.3259..
  • [141]^"Deep Learning for Natural Language Processing: Theory and Practice (CIKM2014 Tutorial) - Microsoft Research". Microsoft Research. Retrieved 2017-06-14..
  • [142]^Turovsky, Barak (November 15, 2016). "Found in translation: More accurate, fluent sentences in Google Translate". The Keyword Google Blog. Retrieved March 23, 2017..
  • [143]^Schuster, Mike; Johnson, Melvin; Thorat, Nikhil (November 22, 2016). "Zero-Shot Translation with Google's Multilingual Neural Machine Translation System". Google Research Blog. Retrieved March 23, 2017..
  • [144]^Sepp Hochreiter; Jürgen Schmidhuber (1997). "Long short-term memory". Neural Computation. 9 (8): 1735–1780. doi:10.1162/neco.1997.9.8.1735. PMID 9377276..
  • [145]^Felix A. Gers; Jürgen Schmidhuber; Fred Cummins (2000). "Learning to Forget: Continual Prediction with LSTM". Neural Computation. 12 (10): 2451–2471. CiteSeerX 10.1.1.55.5709. doi:10.1162/089976600300015015..
  • [146]^Wu, Yonghui; Schuster, Mike; Chen, Zhifeng; Le, Quoc V; Norouzi, Mohammad; Macherey, Wolfgang; Krikun, Maxim; Cao, Yuan; Gao, Qin; Macherey, Klaus; Klingner, Jeff; Shah, Apurva; Johnson, Melvin; Liu, Xiaobing; Kaiser, Łukasz; Gouws, Stephan; Kato, Yoshikiyo; Kudo, Taku; Kazawa, Hideto; Stevens, Keith; Kurian, George; Patil, Nishant; Wang, Wei; Young, Cliff; Smith, Jason; Riesa, Jason; Rudnick, Alex; Vinyals, Oriol; Corrado, Greg; et al. (2016). "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation". arXiv:1609.08144 [cs.CL]..
  • [147]^"An Infusion of AI Makes Google Translate More Powerful Than Ever." Cade Metz, WIRED, Date of Publication: 09.27.16. https://www.wired.com/2016/09/google-claims-ai-breakthrough-machine-translation/.
  • [148]^Boitet, Christian; Blanchon, Hervé; Seligman, Mark; Bellynck, Valérie (2010). "MT on and for the Web" (PDF). Retrieved December 1, 2016..
  • [149]^Arrowsmith, J; Miller, P (2013). "Trial watch: Phase II and phase III attrition rates 2011-2012". Nature Reviews Drug Discovery. 12 (8): 569. doi:10.1038/nrd4090. PMID 23903212..
  • [150]^Verbist, B; Klambauer, G; Vervoort, L; Talloen, W; The Qstar, Consortium; Shkedy, Z; Thas, O; Bender, A; Göhlmann, H. W.; Hochreiter, S (2015). "Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project". Drug Discovery Today. 20 (5): 505–513. doi:10.1016/j.drudis.2014.12.014. PMID 25582842..
  • [151]^Wallach, Izhar; Dzamba, Michael; Heifets, Abraham (2015-10-09). "AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery". arXiv:1510.02855 [cs.LG]..
  • [152]^"Toronto startup has a faster way to discover effective medicines". The Globe and Mail. Retrieved 2015-11-09..
  • [153]^"Startup Harnesses Supercomputers to Seek Cures". KQED Future of You. Retrieved 2015-11-09..
  • [154]^"Toronto startup has a faster way to discover effective medicines"..
  • [155]^Tkachenko, Yegor (April 8, 2015). "Autonomous CRM Control via CLV Approximation with Deep Reinforcement Learning in Discrete and Continuous Action Space". arXiv:1504.01840 [cs.LG]..
  • [156]^van den Oord, Aaron; Dieleman, Sander; Schrauwen, Benjamin (2013). Burges, C. J. C.; Bottou, L.; Welling, M.; Ghahramani, Z.; Weinberger, K. Q., eds. Advances in Neural Information Processing Systems 26 (PDF). Curran Associates, Inc. pp. 2643–2651..
  • [157]^Elkahky, Ali Mamdouh; Song, Yang; He, Xiaodong (2015-05-01). "A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems". Microsoft Research..
  • [158]^Chicco, Davide; Sadowski, Peter; Baldi, Pierre (1 January 2014). Deep Autoencoder Neural Networks for Gene Ontology Annotation Predictions. Proceedings of the 5th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics - BCB '14. ACM. pp. 533–540. doi:10.1145/2649387.2649442. hdl:11311/964622. ISBN 9781450328944..
  • [159]^Sathyanarayana, Aarti (2016-01-01). "Sleep Quality Prediction From Wearable Data Using Deep Learning". JMIR mHealth and uHealth. 4 (4): e125. doi:10.2196/mhealth.6562. PMC 5116102. PMID 27815231..
  • [160]^Choi, Edward; Schuetz, Andy; Stewart, Walter F.; Sun, Jimeng (2016-08-13). "Using recurrent neural network models for early detection of heart failure onset". Journal of the American Medical Informatics Association. 24 (2): 361–370. doi:10.1093/jamia/ocw112. ISSN 1067-5027. PMC 5391725. PMID 27521897..
  • [161]^"Deep Learning in Healthcare: Challenges and Opportunities". Medium. 2016-08-12. Retrieved 2018-04-10..
  • [162]^Litjens, Geert; Kooi, Thijs; Bejnordi, Babak Ehteshami; Setio, Arnaud Arindra Adiyoso; Ciompi, Francesco; Ghafoorian, Mohsen; van der Laak, Jeroen A.W.M.; van Ginneken, Bram; Sánchez, Clara I. (December 2017). "A survey on deep learning in medical image analysis". Medical Image Analysis. 42: 60–88. doi:10.1016/j.media.2017.07.005..
  • [163]^Forslid, Gustav; Wieslander, Hakan; Bengtsson, Ewert; Wahlby, Carolina; Hirsch, Jan-Michael; Stark, Christina Runow; Sadanandan, Sajith Kecheril (October 2017). "Deep Convolutional Neural Networks for Detecting Cellular Changes Due to Malignancy". 2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice: IEEE: 82–89. doi:10.1109/ICCVW.2017.18. ISBN 9781538610343..
  • [164]^De, Shaunak; Maity, Abhishek; Goel, Vritti; Shitole, Sanjay; Bhattacharya, Avik (2017). "Predicting the popularity of instagram posts for a lifestyle magazine using deep learning". 2nd IEEE Conference on Communication Systems, Computing and IT Applications: 174–177. doi:10.1109/CSCITA.2017.8066548. ISBN 978-1-5090-4381-1..
  • [165]^Schmidt, Uwe; Roth, Stefan. Shrinkage Fields for Effective Image Restoration (PDF). Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on..
  • [166]^Czech, Tomasz. "Deep learning: the next frontier for money laundering detection". Global Banking and Finance Review..
  • [167]^"Army researchers develop new algorithms to train robots". EurekAlert!. Retrieved 2018-08-29..
  • [168]^Utgoff, P. E.; Stracuzzi, D. J. (2002). "Many-layered learning". Neural Computation. 14 (10): 2497–2529. doi:10.1162/08997660260293319. PMID 12396572..
  • [169]^Elman, Jeffrey L. (1998). Rethinking Innateness: A Connectionist Perspective on Development. MIT Press. ISBN 978-0-262-55030-7..
  • [170]^Shrager, J.; Johnson, MH (1996). "Dynamic plasticity influences the emergence of function in a simple cortical array". Neural Networks. 9 (7): 1119–1129. doi:10.1016/0893-6080(96)00033-0. PMID 12662587..
  • [171]^Quartz, SR; Sejnowski, TJ (1997). "The neural basis of cognitive development: A constructivist manifesto". Behavioral and Brain Sciences. 20 (4): 537–556. CiteSeerX 10.1.1.41.7854. doi:10.1017/s0140525x97001581..
  • [172]^S. Blakeslee., "In brain's early growth, timetable may be critical," The New York Times, Science Section, pp. B5–B6, 1995..
  • [173]^Mazzoni, P.; Andersen, R. A.; Jordan, M. I. (1991-05-15). "A more biologically plausible learning rule for neural networks". Proceedings of the National Academy of Sciences. 88 (10): 4433–4437. Bibcode:1991PNAS...88.4433M. doi:10.1073/pnas.88.10.4433. ISSN 0027-8424. PMC 51674. PMID 1903542..
  • [174]^O'Reilly, Randall C. (1996-07-01). "Biologically Plausible Error-Driven Learning Using Local Activation Differences: The Generalized Recirculation Algorithm". Neural Computation. 8 (5): 895–938. doi:10.1162/neco.1996.8.5.895. ISSN 0899-7667..
  • [175]^Testolin, Alberto; Zorzi, Marco (2016). "Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions". Frontiers in Computational Neuroscience. 10: 73. doi:10.3389/fncom.2016.00073. ISSN 1662-5188. PMC 4943066. PMID 27468262..
  • [176]^Testolin, Alberto; Stoianov, Ivilin; Zorzi, Marco (September 2017). "Letter perception emerges from unsupervised deep learning and recycling of natural image features". Nature Human Behaviour. 1 (9): 657–664. doi:10.1038/s41562-017-0186-2. ISSN 2397-3374..
  • [177]^Buesing, Lars; Bill, Johannes; Nessler, Bernhard; Maass, Wolfgang (2011-11-03). "Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons". PLOS Computational Biology. 7 (11): e1002211. Bibcode:2011PLSCB...7E2211B. doi:10.1371/journal.pcbi.1002211. ISSN 1553-7358. PMC 3207943. PMID 22096452..
  • [178]^Morel, Danielle; Singh, Chandan; Levy, William B. (2018-01-25). "Linearization of excitatory synaptic integration at no extra cost". Journal of Computational Neuroscience. 44 (2): 173–188. doi:10.1007/s10827-017-0673-5. ISSN 0929-5313. PMID 29372434..
  • [179]^Cash, S.; Yuste, R. (February 1999). "Linear summation of excitatory inputs by CA1 pyramidal neurons". Neuron. 22 (2): 383–394. doi:10.1016/s0896-6273(00)81098-3. ISSN 0896-6273. PMID 10069343..
  • [180]^Olshausen, B; Field, D (2004-08-01). "Sparse coding of sensory inputs". Current Opinion in Neurobiology. 14 (4): 481–487. doi:10.1016/j.conb.2004.07.007. ISSN 0959-4388..
  • [181]^Yamins, Daniel L K; DiCarlo, James J (March 2016). "Using goal-driven deep learning models to understand sensory cortex". Nature Neuroscience. 19 (3): 356–365. doi:10.1038/nn.4244. ISSN 1546-1726..
  • [182]^Zorzi, Marco; Testolin, Alberto (2018-02-19). "An emergentist perspective on the origin of number sense". Phil. Trans. R. Soc. B. 373 (1740): 20170043. doi:10.1098/rstb.2017.0043. ISSN 0962-8436. PMC 5784047. PMID 29292348..
  • [183]^Güçlü, Umut; van Gerven, Marcel A. J. (2015-07-08). "Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream". Journal of Neuroscience. 35 (27): 10005–10014. arXiv:1411.6422. doi:10.1523/jneurosci.5023-14.2015. PMID 26157000..
  • [184]^Metz, C. (12 December 2013). "Facebook's 'Deep Learning' Guru Reveals the Future of AI". Wired..
  • [185]^"Google AI algorithm masters ancient game of Go". Nature News & Comment. Retrieved 2016-01-30..
  • [186]^Silver, David; Huang, Aja; Maddison, Chris J.; Guez, Arthur; Sifre, Laurent; Driessche, George van den; Schrittwieser, Julian; Antonoglou, Ioannis; Panneershelvam, Veda; Lanctot, Marc; Dieleman, Sander; Grewe, Dominik; Nham, John; Kalchbrenner, Nal; Sutskever, Ilya; Lillicrap, Timothy; Leach, Madeleine; Kavukcuoglu, Koray; Graepel, Thore; Hassabis, Demis (28 January 2016). "Mastering the game of Go with deep neural networks and tree search". Nature. 529 (7587): 484–489. Bibcode:2016Natur.529..484S. doi:10.1038/nature16961. ISSN 0028-0836. PMID 26819042..
  • [187]^"A Google DeepMind Algorithm Uses Deep Learning and More to Master the Game of Go | MIT Technology Review". MIT Technology Review. Retrieved 2016-01-30..
  • [188]^"Blippar Demonstrates New Real-Time Augmented Reality App". TechCrunch..
  • [189]^"TAMER: Training an Agent Manually via Evaluative Reinforcement - IEEE Conference Publication". ieeexplore.ieee.org. Retrieved 2018-08-29..
  • [190]^"Talk to the Algorithms: AI Becomes a Faster Learner". governmentciomedia.com. Retrieved 2018-08-29..
  • [191]^Marcus, Gary (2018-01-14). "In defense of skepticism about deep learning". Gary Marcus. Retrieved 2018-10-11..
  • [192]^Knight, Will (2017-03-14). "DARPA is funding projects that will try to open up AI's black boxes". MIT Technology Review. Retrieved 2017-11-02..
  • [193]^Marcus, Gary (November 25, 2012). "Is "Deep Learning" a Revolution in Artificial Intelligence?". The New Yorker. Retrieved 2017-06-14..
  • [194]^Smith, G. W. (March 27, 2015). "Art and Artificial Intelligence". ArtEnt. Archived from the original on June 25, 2017. Retrieved March 27, 2015.CS1 maint: BOT: original-url status unknown (link).
  • [195]^Mellars, Paul (February 1, 2005). "The Impossible Coincidence: A Single-Species Model for the Origins of Modern Human Behavior in Europe" (PDF). Evolutionary Anthropology: Issues, News, and Reviews. Retrieved April 5, 2017..
  • [196]^Alexander Mordvintsev; Christopher Olah; Mike Tyka (June 17, 2015). "Inceptionism: Going Deeper into Neural Networks". Google Research Blog. Retrieved June 20, 2015..
  • [197]^Alex Hern (June 18, 2015). "Yes, androids do dream of electric sheep". The Guardian. Retrieved June 20, 2015..
  • [198]^Goertzel, Ben (2015). "Are there Deep Reasons Underlying the Pathologies of Today's Deep Learning Algorithms?" (PDF)..
  • [199]^Nguyen, Anh; Yosinski, Jason; Clune, Jeff (2014). "Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images". arXiv:1412.1897 [cs.CV]..
  • [200]^Szegedy, Christian; Zaremba, Wojciech; Sutskever, Ilya; Bruna, Joan; Erhan, Dumitru; Goodfellow, Ian; Fergus, Rob (2013). "Intriguing properties of neural networks". arXiv:1312.6199 [cs.CV]..
  • [201]^Zhu, S.C.; Mumford, D. (2006). "A stochastic grammar of images". Found. Trends Comput. Graph. Vis. 2 (4): 259–362. CiteSeerX 10.1.1.681.2190. doi:10.1561/0600000018..
  • [202]^Miller, G. A., and N. Chomsky. "Pattern conception." Paper for Conference on pattern detection, University of Michigan. 1957..
  • [203]^Eisner, Jason. "Deep Learning of Recursive Structure: Grammar Induction"..
  • [204]^"AI Is Easy to Fool—Why That Needs to Change". Singularity Hub. 2017-10-10. Retrieved 2017-10-11..
  • [205]^Gibney, Elizabeth (2017). "The scientist who spots fake videos". Nature. doi:10.1038/nature.2017.22784..